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Communication is expensive!

Communication means moving data

Serial communication = moving data across memory hierarchy

Parallel communication = moving data across network

@ Communication usually dominates runtime, energy cost
= Avoid communication to save time and energy!

@ How much can you avoid? Lower bound on data movement
@ Attain lower bound = Communication-optimal algorithm



° Avoiding Communication in Linear Algebra
@ Lower bounds for matrix multiplication. ..
@ ...attainable by tiling

@ Lower bounds for linear algebra (... attainable?)



First Lower Bound: Matrix Multiplication (“Matmul”)

A, B, C are N-by—N matrices.
fori=1:N,
forj=1:N,
fork=1:N,
C(i,j) += A(i, k) = B(k,])

C=C+A-B =

Theorem ([HK81])

Consider computing C + A - B as above (in serial), with any order on
the NS iterations. A processor must move

#iterations N8
ULl S LUvtEe <(fast memory size)1/2) (M1/2>

words between slow memory (of unbounded capacity) and fast
memory (of size M words).




First Lower Bound: Geometric Intuition [ITT04] (1/2)

fori=1:N, forj=1:N, fork=1:N
C(i,f) += A(i, k) = B(k, )

Idea Bound volume(S) by the areas of the shadows S casts
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First Lower Bound: Geometric Intuition [ITT04] (2/2)

Idea Bound volume(S) by the areas of the shadows S casts

ldea Upper bound on data reuse = lower bound on data
movement

@ Upper bound on number of operands: M
o max(|Sal, |Sal,|Scl) < M
o |Sal +[Sg|+|Sc| <M
@ Upper bound on number of iterations doable given M operands:
° |S| < |SA|1/2|SB|1/2|SC|1/2 < M3/2
@ Data reuse = # iterations /# operands = O(M'/?)
o (See [BDHS11] for precise argument.)

@ # words moved > total # iterations/max data reuse = Q(N®/M'/2)



Attaining Lower Bounds — Tiling Matmul (1/3)

fori=1:N,
forj=1:N,
fork=1:N,
C(i,j) += A(i, k) = B(k,j)




Attaining Lower Bounds — Tiling Matmul (1/3)

Suppose M < N.

fori=1:N,
forj=1:N,
Load C(i, ) ... N2 loads total
fork=1:N,
Load A(/, k) and B(k,j) ...2N®loads total
C(i, j) += Ali, k) * B(k, ])
Store C(i,)) ... N2 stores total

# Words Moved = N? + 2N3 + N? = O(N?),

which is suboptimal.



Attaining Lower Bounds — Tiling Matmul (2/3)
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Attaining Lower Bounds — Tiling Matmul (3/3)

Suppose M < N and block/tile size b|N and 36> < M

fori=1:N/b,
forj=1:N/b,
Load block C(i, ) ... (N/b)? block loads total
fork =1:N/b,
Load blocks A(i, k) and B(k,j) ...2(N/b)3 block loads total
C(i,j) += A(i, k) = B(k,j)
Store block C(i, ) ...(N/b)? block stores total

and for the choice b = (M/3)'/? (assume integer),

N2 N8 N2 5 N8
# Words Moved = <b2+2b3+b2) - b = O<M1/2> ,

which is asymptotically optimal.



Lower Bounds for Linear Algebra

Theorem ([BDHS11])

Suppose we are given an index set Z ¢ Z2. Then the “Matmul-like”
program

must move | Q(|Z|/M"/?) | words.

Under some technical assumptions, this yields lower bounds for
@ BLAS-3,e.g.,A-B,A'.B;
@ One-sided factorizations, e.g., LU, Cholesky, LDLT, ILU(t);

@ Orthogonal factorizations, e.g., Gram—Schmidt, QR,
eigenvalue/singular value problems;

@ Tensor contractions, some graph algorithms; and
@ Sequences of these operations, interleaved arbitrarily.



9 Beyond Linear Algebra: Affine Array References

E.g., A(i + 2/,3k + 4)

@ Extends previous lower bounds to larger class of programs.

@ Lower bounds are computable.

@ Matching upper bounds (i.e., optimal algorithms) in special case:
linear algebra, tensor contraction, direct N—body, database join,
etc. (when array references pick a subset of the loop indices)
Ongoing work addresses attainability in the general case.



Generalization: Affine Array References

Given ‘loop iterations’ indexed (i1, . .

.,ig) € Z9, and parameters

Param. Description Example: Matmul
d dim. of iteration space (rank of Z9) 3
Z iteration space, a subset of Z¢ {1,..., N}3
Aj,d; | Each di—dimensional array A; is | {A,B,C},{2,2,2}
subscripted by 7%
o subscripts ¢;: Z9 — 79 (affine | {(i, k), (k.j),(i,/)}
combinations of loop indices)
m number of ‘arrays’ (injections into 3

memory locations)

fori=(iy,...,iy) e ZC 79,

inner_loop;(A1(¢1(1)), - - ., Am(om(i)))

10



Lower Bound Strategy for Affine Array References

Proof strategy:
@ For any (finite) set E C Z of loop iterations that accesses O(M)
operands, find o such that |[E| = O(M?).
e Matmul: 0 = 3/2.
@ Since data reuse = O(M°~"), we conclude the program must
move Q(| Z|/M°~") words.
e Matmul: Q(N3/M'/2) words.

1



Upper Bounds via Holder-Brascamp-Lieb (HBL) theory

Theorem (Extension of [BCCT10, Theorem 2.4])

Forje {1,...,m}, let ¢;: Z¢ — Z% be a group homomorphism and s;
be a nonnegative number. Then,

for all subgroups H of Z°,
if and only if,

for all finite subsets E of Z9,

rank(H

Z sj - rank(¢;(H

|El < H|¢/ ).
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Lower Bounds for Affine Array References

Theorem (Communication Lower Bound)
A program of the form

fori=(i1,...,ig) € Z, inner_loop;(Ai(¢1(f)),- .., Am(em(i)))

must move | Q(|Z|/Mi%)~1) words, where s = (s1,. .., Sm) satisfies

rank(H) < Zj sj - rank(¢;(H)) for all subgroups H of Z°.

Proof sketch:
Let E be any ‘cache block’; bound data reuse (#iterations/#operands)
@ Operands: max; |A;(¢;(E))| = max; |[¢;(E)| < M
Q lterations: |E| < []; |¢;(E)|% < (max; |¢;(E)|)>="
© Data reuse: O(M(>i%)~1) = # words moved: Q(|Z|/ M= )~1),
o (See [CDK™13] for precise argument.)
13



A Linear Program to Compute o (1/2)

We can write the set of inequalities (for subgroups Hi, ..., H;, ... of Z9)

ank(Hh) < 7 5 rank(e(Hh))

rank(H;) S > w1 8; - rank(¢;(Hr))

as a system of inequalities

rank(¢1(Hi)) -+ rank(¢m(Hr)) rank(H;)

1
rank(¢r(H)) - rank(ém(H)) ( | rank(H,) |

m

or more succinctly, as|A-s>r|.

14



A Linear Program to Compute o (2/2)

@ Any s € [0,00)™ that satisfies A - s > r leads to a valid upper
bound M7, with o = o(s) = 3 ;5 =17s.

@ Let sy denote the smallest o(s), which leads to the tightest
upper bound M?(9), thus the tightest lower bound Q(|Z|/M7(8)-1).

Definition (HBL-LP)

minimize o(s)=1's st A-s>r

We can decidably compute syg,, the minimizing o(s).

15



Special Case: Subscripts are Subsets of Indices

e.g., A(i,k), B(k,j), C(i,j), subsets of {i,j, k}

Theorem

Suppose every ¢; projects a subset of the loop indices iy, ..., iy. Let
Ag be the d rows of A corresponding to subgroups H; = (e;) for i = 1
to d. then the linear program

minimize 1’s st Ag-s>1

yields the same optimum o(s) as HBL-LP, and furthermore, the dual
linear program

maximize 17x st Al . x<1

gives the optimal block size M*i for each loop.

v

Note: In practice, we only need to solve the dual: 17x =17s = sp5.. 16



Special Case: Example 1/3: Matmul

Original code:

fori=1:N, forj=1:N, fork=1:N,
C(ij) += A(i, k)  B(k, j)

Now we write down and solve the linear program

maximize sy =1"x st Al . x<1

1/2
) = x=1[1/2 =  SuypL = 3/2
0 1/2

>

@

|

W >
-~

o —
—_ —_ O -

— —
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Special Case: Example 1/3: Matmul

For any execution of the code, the number of words moved is
Q(|2|/Ms#=—1) = Q(N®/M'/2), and this is attained by blocks of size
M'/2—by—M'/2—by—M'/2 in the following code (b = M'/?).

forii=1:b:N, forjj=1:b:N, forkij=1:b:N,
forib=0:b—1, forjp=0:b—1, forko=0:b-1,
(1,4, k) = (i1, j1, ke) + (i2, J2, K2)
... /l'inner loop with index (1, /, k)

The block sizes may have to be smaller by a constant factor, e.g.
b; = (M/m)% = (M/3)"/2, to fit in cache simultaneously.

17



Special Case: Example 2/3: N-body

Original code:
fori=1:N, forj=1:N,
F(i) += compute_force(P(i), P(j))

Now we write down and solve the linear program

maximize sy =1"x st Al . x<1
i J

F (1 0 1
Ae: P1 1 0 = X:<1) = SHBL:2
P> \0 1

18



Special Case: Example 2/3: N-body

For any execution of the code, the number of words moved is
Q(|Z|/MS=—1) = Q(N?/M), and this is attained by blocks of size
M—-by—M in the following code (b = M).

forii=1:b:N, forji=1:b:N,
forib=0:b—1, forjp=0:b—-1,
(i,)) = (i1, 1) + (I, j2)
... /l'inner loop with index (i, )

The block sizes may have to be smaller by a constant factor, e.g.
bi = (M/m)* = M/3, to fit in cache simultaneously.

18



Special Case: Example 3/3: Complicated Code

Original code:

foriy=1:N, forih=1:N, ..., forig=1:N,
Aq(iy, Iz, ig) +=funcy(Aa(i1, Io, ia), As(lo, Ia, i5), Ag (I3, is, ig))
A5(I'27 16) += fUﬂCg(AG(i1 . i4, i5), A3(i3, i4, Is))

Now we write down and solve the linear program

maximize sy =1"x st Al . x<1

it b I3 iy i5 g

A 101 0 0 f1 2/7
Ao 11 0 1 0 O 3/7
A, _ A o1 1o 1o _ |17
Ay, As2| 0 0 1 1 0 f 27
3/7
As 0100 0 1 e

A 100 1 10

= Sy = 15/7 19



Special Case: Example 3/3: Complicated Code

For any execution of the code, the number of words moved is
Q(|2|/MS+=—1) = Q(N8/MB8/7), and this is attained by blocks of size
M2/ —by—MB/7—oy—M"'/7—by—M?/7—by—M®/"—by—M*/7 in the following
code (bj = MXi).

fori171:1:b1:N, soog fOI‘I'176:1:b6:N,
fori271=0:b1—1, 000y fori276=0:b5—1,
(i, lg) = (i1, i16) + (i1, i26)
.../l inner loop with index (i1, ..., is)

The block sizes may have to be smaller by a constant factor, e.g.
b = (M/m)* = (M/6)%, to fit in cache simultaneously.

19



Extending to Other Machine Models

Our lower bounds extend to more A
complicated machines: *

@ Multiple levels of memory: / )
apply lower bound to each E
pair of adjacent levels , )

@ Homogeneous parallel %
processors: | Z|/P work per L
processor i

@ Hierarchical parallel W \ o
processors ‘

@ Heterogeneous machines:

T

optimization problem to
balance |Z| work

20



Optimal Parallel Algorithms (1/2)

@ Sequential tiling suggests parallel ‘working sets.
@ Optimal parallel algorithms for ‘special case’ and Z = N¢:

Partition domain into tiles of size N/M*1—by— - - —by—N/M*d
While there are unexecuted tiles
Assign unexecuted tiles to P processors
Communicate the data to each processor

Execute tiles

tiles per processor words moved
——"———— Words moved per processor

m NE ’ per tile f_/r
(fie) 50 -o(mie)
j:

attaining the lower bound of Q((|Z|/P)/MSwe-—1).

21



Optimal Parallel Algorithms (2/2)

How much of the machine’s memory should you use?

M each processor’s working set size
Mcap each processor’s memory capacity
My total storage required for arrays, | [J; Aj(¢;(Z))]

M |Z| SHBL
5 < M<mi <Mcap,(P> )

@ Lower bound on M: store all arrays (across machine)
@ Upper bounds on M:

e working sets must fit in processors’ memories
e load balance (need at least P tiles)

@ (‘N.5D algorithms’) Wntmg M = CMg/ P, it is beneficial to use up
to C < ('ZAL,S”BL> P sher e copies of the data (Matmul: C < Ps)

arr

22



Ongoing Work: Optimal Algorithms

@ Goal: generalize duality argument beyond “special case”
@ Goal: bound constants hidden in ‘big-O’
e N-body: O(M?) particle-particle interactions

This tiling is optimal.

Access ¢ =i, po =

23



Ongoing Work: Optimal Algorithms

@ Goal: generalize duality argument beyond “special case”
@ Goal: bound constants hidden in ‘big-O’
e N-body: O(M?) particle-particle interactions

This tiling is suboptimal.

Access o1 =i —j, o =i+]

23



Ongoing Work: Optimal Algorithms

@ Goal: generalize duality argument beyond “special case”
@ Goal: bound constants hidden in ‘big-O’
e N-body: O(M?) particle-particle interactions

This tiling is optimal. Note:
@ two sets of tiles

@ generalizes to arbitrary
linear combinations of /
and j

@ group theory reveals
the optimal tiling

Access p1 =1 —f, po =i+

23



Ongoing Work: Data Dependencies

@ Partial order on Z encoded as DAG
@ Some sets E are inadmissible (cannot be blocked)

Question
Can we tighten our bound |E| < []; |¢;(E)|¥ for admissible sets?

Question
Can we extend our parallel theory to expose tradeoffs between:
@ Concurrency, efficiency, memory, communication, . ..

| A\

N,

24



Ongoing Work: Cost Model

@ Only discussed communication volume (bandwidth cost).
@ Extend model to address
o # Messages/synchronizations (latency cost)

Message size 1 < w < M words, so a latency lower bound is

[# words moved/w] = Q(|Z|/(wM®=~1)) = Q(|Z|/MS=) messages.

e Energy/power costs
o Network topology, congestion

25



Conclusions

@ Communication is slowing you down!
@ Lower bounds motivate new/improved algorithms

e Previous work: Matmul [HK81, ITT04], linear algebra [BDHS11]
e This work: programs with affine array references

@ Goal: Compiler generates communication-optimal code
@ Tech. report [CDK'13] at bebop.eecs.berkeley.edu, or

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.pdf

Thank You
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